/IAJOR HS KALSI'S BAALNOI ACADEMY (Delhi /Jaipur)

Page | 1

NDA MATHS PAPER – 2

If α, β are real, then what is $\left|\frac{\alpha+i\beta}{\beta+\alpha i}\right|$ equal to? 1. (a) 0 (d) 2 (b) 1/2(c) 1 What is square root of -5 + 12i? 2. (c) -2 + 3i(a) 2 - 3i(b) 2 + 3i(d) None If $\alpha = \frac{1+\sqrt{3}i}{2}$, then, what is the value of $1 + \alpha^8 + \alpha^{16} + \alpha^{24} + \alpha^{32}$? 3. (d) ω^2 (b) 1 (c) ω (a) 0 What is argument of $(1 - \sin \theta) + i \cos \theta$? 4. (d) $\frac{\pi}{4} + \frac{\theta}{2}$ (b) $\frac{\pi}{2} + \frac{\theta}{2}$ (c) $\frac{\pi}{4} - \frac{\theta}{2}$ (a) $\frac{\pi}{2} - \frac{\theta}{2}$ The number of non zero integral solutions of the equation $|1 - 2i|^x = 5^x$ is 5. (d) Three (c) Two (a) Zero (b) One What is coefficient of x^3 in expansion of $\frac{3-2x}{(1+3x)^3}$? 6. (a) - 272(d) -918 (b) -540 (c) -870 What is middle term is expansion of $\left(1 - \frac{x}{2}\right)^{\alpha}$? 7. (b) $\frac{17x^5}{2}$ (c) $\frac{35x^5}{2}$ (a) $\frac{35x^4}{2}$ (d) None If the coefficients of x^r and x^{r+1} are equal in expansion of $(1 + x)^{2n+1}$, then 8. value of r is (b) $\frac{2n-1}{2}$ (c) $\frac{2n+1}{2}$ (a) *n* (d) n + 1If sum of fifth and sixth terms in expansion of $(x - y)^n$, $n \ge 5$ is zero, then 9. x/y is equal to

(a)
$$\frac{n-5}{6}$$
 (b) $\frac{n-4}{5}$ (c) $\frac{5}{n-4}$ (d) $\frac{6}{n-5}$

(Delhi /Jaipur)

How many 3 - digits numbers each less than 600 can be formed from 10. {1, 2, 3, 4, 7, 9} if repetition of digits not allowed? (d) None (b) 180 (c) 144 (a) 216

AJOR HS KALSI'S BAALNOI ACADEMY

- From 7 men and 4 women a committee of 6 is to be formed such that the 11. committee contains atleast two women. How many ways committee will be formed?
 - (a) 210 (b) 371 (c) 462 (d) 5544

What is the number of words formed from letters of word 'JOKE' so that 12. vowels and consonants are alternate? (c) 12 (a) 4 (b) 8

- (d) None (d) 2ⁿ + 1 What is value of $\sum_{r=1}^{n}$ 13. (c) 2^{*n*-1} (a) $2^n - 1$
- How many different permutations can be made out of the letters of word 14. **PERMUTATION?** (b) 19954800 (a) 19958400 (c) 19952400 (d) None
- The value of $\frac{1}{\log_3 e} + \frac{1}{\log_3 e^2} \dots \infty$ is 15. (a) $\log_{\rho} 9$ (d) $\log_{e} 3$ (b) 0 (c) 1
- What is 10^{th} Common term of the series 2 + 6 + 10 ... and $1 + 6 + 11 + \cdots$? 16. (a) 180 (b) 186 (c) 196 (d) 206
- If the n^{th} term of an A. P. is 3n + 7, then what is sum of first 50 terms? 17. (a) 3925 (b) 4100 (c) 4175 (d) 8200
- 18. If the sum of first two terms and the sum of first four terms of a G.P. with positive common ratio are 8 and 80 respectively, then what is 6th term? (c) 486 (d) 1458 (a) 88 (b) 243
- If a, b, c are three positive numbers of an A.P. then 19.

Page 3

- (a) $ac > b^2$ (b) $b^2 > a + c$ (c) $ab + bc \le 2ac$ (d) $ab + bc \ge 2ac$
- 20. If x² + px + 4 > 0 for all real values of x, then which one of the following is correct?
 (a) |P| < 4
 (b) |P| ≤ 4
 (c) |P| > 4
 (d) |P| ≥ 4
- 21. If both roots of equation x² 2kx + k² 4 = 0, lies between -3 and 5, then which one of the following is correct?
 (a) -2 < k < 2
 (b) -5 < k < 3
 (c) -3 < k < 5
 (d) -1 < k < 3
- 22. If the graph of quadratic polynomial lies entirely above x axis, then which one of the following is correct?
 - (a) both roots and real(b) one root is real and other is imaginary(c) both roots are imaginary(d) None
- 23. The equation $x^2 + |1 x| 5 = 0$ has (a) two rational roots (b) two irrational roots (c) No real roots (d) None

24. If α and $\beta \neq 0$ are roots of quadratic equation $x^2 + \alpha x - \beta = 0$, then quadratic expression $-x^2 + \alpha x + \beta$ has (a) least value -1/4 (b) Greatest value 9/4(c) Greatest value 1/4 (d) None

25. If set A has 10 elements then number of subsets of A having exactly 2 elements is(a) 20(b) 40(c) 45(d) 90

26. If *R* be relation from *A* to $B, B = \{1, 3, 5\}, A = \{1, 2, 3, 4\}$ such that $R = \{(a, b): a < b, a \in A \text{ and } b \in B\}$. What is RoR^{-1} ? (a) $\{(1,3), (1,5), (2,3), (2,5), (3,5), (4,5)\}$ (b) $\{(3,1), (5,1), (3,2), (5,2), (5,3), (5,4)\}$ (c) $\{(3,3), (3,5), (5,3), (5,5)\}$ (d) None

Page 4

- (c) $(101)_2$ and $(100)_2$ (d) None $A = \{x/x \text{ is multiple of } 2\}, B = \{x/x \text{ is multiple of } 5\}$ and $C = \{x/x \text{ is multiple of } 5\}$ 28. lf x is multiple of 10}, then $A \cap (B \cap C)$ is equal to (d) None (b) *B* (c) *C* (a) A In a school, all the students play atleast one of three games table tennis, 29. chess and carrom, 60 play chess, 50 play table tennis, 48 play carrom, 12 play chess and carrom, 15 play carrom and table tennis, 20 play table tennis and chess. What is maximum number of students in the school? (b) 123 (c) 125 (a) 111 (d) 135 If $f(x) = x^2$, $g(x) = \tan x$ and $h(x) = \log x$ then fo(fof)(2) is equal to 30. (b) 8 (a) 2 (c) 16 (d) 256 If $sin(\pi cos x) = cos(\pi sin x)$, then what is value of sin 2x? 31. (b) -1/2(c) -3/4(a) -1/4(d) −1 What is value of cosec $\left(\frac{13\pi}{12}\right)$? 32. (b) $-\sqrt{6} + \sqrt{2}$ (c) $\sqrt{6} - \sqrt{2}$ (d) $-\sqrt{6} - 2$ (a) $\sqrt{6} + \sqrt{2}$ If $\sin A = \sin B$ and $\cos A = \cos B$ then which one of the following is correct? 33. (a) $b = n\pi + A$ (b) $A = 2n\pi - B$ (c) $A = 2n\pi + B$ (d) $B = n\pi - A$
- If $\propto = \pi/8$, then what is the value of $\cos \propto .\cos 2 \propto .\cos 4 \propto ?$ 34. (a) 0 (b) 1/4 (c) 8 (d) 4

If $\sin^4 x - \cos^4 x = P$ then which one of the following correct? 35. (a) P = 1(b) P = 0(c) |P| > 1(d) $|P| \le 1$

27.

respectively

(a) $(111)_2$ and $(100)_2$

The remainder and Quotient of binary division $(101110)_2 \div (110)_2$ are

(b) $(100)_2$ and $(111)_2$

MAJOR HS KALSI'S BAALNOI ACADEMY (Delhi /Jaipur)

D	2	a	0	
Г	a	g	e	5

What is $\frac{\sin \theta + 1}{\cos \theta}$ ec (a) $\frac{\sin \theta + \cos \theta - 1}{\sin \theta + \cos \theta + 1}$	$\begin{array}{l} \text{(b)} \frac{\sin\theta + \cos\theta + 1}{\sin\theta + \cos\theta - 1} \end{array}$	(c) $\frac{\sin\theta - \cos\theta - 1}{\sin\theta + \cos\theta + 1}$	(d) None			
$ \begin{aligned} &\text{If } x = \sin \theta + \cos \theta \\ &2x^2 + 4y^2 + 4y - \theta \\ &(z) & 0 \end{aligned} $	$x = \sin \theta + \cos \theta$ and $y = \sin \theta \cdot \cos \theta$, then what is the value of $x^4 - 4x^2y - 4y^2 + 4y^2 + 4y + 1$?					
(a) \cup	(D) I Stan ² r = 1 is give	(c) Z	(a) None			
(a) $x = n\pi \pm \pi/3$	(b) $x = n\pi + \pi/3$	$x = n \pi \pm \pi/6$	$5 (d) x = n\pi + \pi/6$			
If $P = \tan(-11)$	$\left(\frac{\pi}{6}\right), q = \tan\left(\frac{21\pi}{4}\right)$	and $r = \cot\left(\frac{283}{6}\right)$	$\left(\frac{\pi}{2}\right)$ then which of the			
1. The value of <i>p</i> (a) Only I	$\times r$ is 2. (b) Only II	2. <i>p,q,r</i> are <i>G.P</i> . (c) both	(d) None			
If $A = (column c)$ (cos 48° - cos 72 (a) -1	os 12° – cos 36°) (s °). Then what is <i>A</i> (b) 0	sin 96° + sin 24°), /B? (c) 1	$B = (\sin 60^\circ - \sin 12^\circ) \times$ (d) 2			
If ratio of angles (a) $4 + \sqrt{3}$	<i>A</i> , <i>B</i> , <i>C</i> of a triang (b) $4 + 2\sqrt{3}$	le is 2 : 5 : 5, what (c) 7 + $4\sqrt{3}$	t is value of $\tan B \cdot \tan C$? (d) $3 + 3\sqrt{3}$			
In $\triangle ABC$ if $\cos B$ (a) Isosceles	$= \frac{\sin A}{2 \sin C'}$ then ΔAB (b) equilate	C is eral (c) Right	(d) Scalene.			
If $x = 4 \tan^{-1} \frac{1}{5}$, y (a) $\pi/2$	$v = \tan^{-1} \frac{1}{70}$ and Z (b) $\pi/3$	= $\tan^{-1} \frac{1}{99}$. Then (c) $\pi/6$	value of $(x - y + z)$ is (d) $\pi/4$			
Which is correct? (i) tan ⁻¹ (1) + tan (a) Only (i)	$a^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{2}$ (b) Only (ii)	(ii) $\sin^{-1}\frac{1}{3} + \cos^{-1}$ (c) both	$^{1}\frac{1}{3} = \frac{\pi}{2}$ (d) None			
	What is $\frac{\sin \theta + 1}{\cos \theta}$ eq (a) $\frac{\sin \theta + \cos \theta - 1}{\sin \theta + \cos \theta + 1}$ If $x = \sin \theta + \cos 2x^2 + 4y^2 + 4y - 4y^2$ (a) 0 The solution of 3 (a) $x = n\pi \pm \pi/3$ If $P = \tan \left(-11\right)$ following is corrected (a) $2\pi + \pi/3$ If $A = (\cos \theta)$ (b) $A = (\cos \theta)$ (c) $48^\circ - \cos 72$ (c) 48°	What is $\frac{\sin \theta + 1}{\cos \theta}$ equal to? (a) $\frac{\sin \theta + \cos \theta - 1}{\sin \theta + \cos \theta + 1}$ (b) $\frac{\sin \theta + \cos \theta + 1}{\sin \theta + \cos \theta - 1}$ If $x = \sin \theta + \cos \theta$ and $y = \sin \theta$. constraints and the equation of the equat	What is $\frac{\sin \theta + 1}{\cos \theta}$ equal to? (a) $\frac{\sin \theta + \cos \theta - 1}{\sin \theta + \cos \theta + 1}$ (b) $\frac{\sin \theta + \cos \theta + 1}{\sin \theta + \cos \theta - 1}$ (c) $\frac{\sin \theta - \cos \theta - 1}{\sin \theta + \cos \theta + 1}$ If $x = \sin \theta + \cos \theta$ and $y = \sin \theta$. $\cos \theta$, then what is $2x^2 + 4y^2 + 4y + 1$? (a) 0 (b) 1 (c) 2 The solution of $3 \tan^2 x = 1$ is given by (a) $x = n\pi \pm \pi/3$ (b) $x = n\pi + \pi/3$ (c) $x = n\pi \pm \pi/6$ If $P = \tan \left(-11\frac{\pi}{6}\right), q = \tan \left(\frac{21\pi}{4}\right)$ and $r = \cot \left(\frac{283}{6}\right)$ following is correct? 1. The value of $p \times r$ is 2. (a) Only 1 (b) Only II (c) both If $A = (\cos 12^\circ - \cos 36^\circ)$ ($\sin 96^\circ + \sin 24^\circ$), ($\cos 48^\circ - \cos 72^\circ$). Then what is A/B ? (a) -1 (b) 0 (c) 1 If ratio of angles A, B, C of a triangle is $2 : 5 : 5$, wha (a) $4 + \sqrt{3}$ (b) $4 + 2\sqrt{3}$ (c) $7 + 4\sqrt{3}$ In ΔABC if $\cos B = \frac{\sin A}{2 \sin C}$, then ΔABC is (a) lsosceles (b) equilateral (c) Right If $x = 4 \tan^{-1}\frac{1}{5}, y = \tan^{-1}\frac{1}{70}$ and $Z = \tan^{-1}\frac{1}{99}$. Then y (a) $\pi/2$ (b) $\pi/3$ (c) $\pi/6$ Which is correct? (i) $\tan^{-1}(1) + \tan^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{2}$ (ii) $\sin^{-1}\frac{1}{3} + \cos^{-1}(a)$ (a) Only (i) (b) Only (ii) (c) both			

54. If $f(x) = [|x| - |x - 1|]^2$ then, what is f'(x) when x > 1? (a) 0 (b) 2x - 1 (c) 4x - 2 (d) 8x - 4 (Delhi /Jaipur)

AJOR HS KALSI'S BAALNOI ACADEMY

Page | 7

- 55. If $\frac{d}{dx} \left(\frac{x^4 + x^2 + 1}{x^2 + x + 1} \right) = Ax + B$. Then what are value of A and B? (a) 2, -1 (b) 2, 1 (c) -2,2 (d) None
- 56. What is derivative of $\log_5 x$ with respect of \log_x^5 ? (a) $-(\log_x^x)^{-2}$ (b) $(\log_x^x)^{-2}$ (c) $-(\log_x^5)^{-2}$ (d) $(\log_x^5)^{-2}$
- 57. If $f(x) = \tan x + e^{-2x} 7x^3$, then value of f'(0) is (a) -2 (b) -1 (c) 0 (d) 3
- 58. What is derivative of $f(x) = \frac{7x}{(2x+1)(x+3)}$? (a) $\frac{-3}{(x+3)^2} - \frac{2}{(2x-1)^2}$ (b) $\frac{-3}{(x+3)^2} - \frac{1}{(2x-1)^2}$ (c) $\frac{3}{(x+3)^2} + \frac{1}{(2x-1)^2}$ (d) None
- 59. What is/are critical points of the function $f(x) = x^{\frac{2}{3}}(5-2x)$ on the interval [-1,2]? (a) 1 (b) 0,1 (c) 3/2 (d) 0,3/2

60. What is x - coordinate of point on the curve $f(x) = \sqrt{x} (7x - 6)$, where tangent is parallel to x - axis? (a) $\frac{-1}{3}$ (b) 2/7 (c) 6/7 (d) 1/2

- 61. A balloon is pumped at rate of 4cm³/s. What is rate at which its surface are increases, if radius is 4cm?
 (a) 1cm²/s
 (b) 2 cm²/s
 (c) 3cm²/s
 (d) 4cm²/s
- 62. A cylinder is inscribed in a sphere of radius *r*. What is the radius of cylinder of maximum volume?
 - (a) $\frac{2r}{\sqrt{3}}$ (b) $\frac{\sqrt{2}r}{\sqrt{3}}$ (c) r (d) $\sqrt{3}r$
- 63. If $f(x) = x + \frac{1}{x}$, when $x \in (0,1)$, then which is correct? (a) f(x) is increases in the interval (b) f(x) decreased in the interval

MAJOR HS KALSI'S BAALNOI ACADEMY (Delhi /Jaipur)

$$Page | 8$$
(c) $f(x)$ fluctuates in the interval (d) None

64. What is the minimum value of $[x (x - 1) + 1]^{1/3}$, where $0 < x < 1$?
(a) $\left(\frac{3}{4}\right)^{1/3}$ (b) 1 (c) $1/3$ (d) $\left(\frac{3}{6}\right)^{1/3}$

65. If $\int x^2 \log x \, dx = \frac{x^3}{m} \log x + \frac{x^3}{n} + C$ then value of m and n are
(a) $\frac{1}{3}, \frac{1}{9}$ (b) $3, -9$ (c) $3, 9$ (d) $3, 3$

66. If $\int x \cdot \tan^{-1} x \, dx = A(x^2 + 1) \cdot \tan^{-1} x + Bx + C$ then what is value of A ?
(a) 1 (b) $1/2$ (c) $-1/2$ (d) $1/4$

67. The value of $\int \frac{1}{\log x} - \frac{1}{(\log x)^2} \, dx$ is
(a) $\frac{x}{\log x} + c$ (b) $\frac{x}{(\log x)^2} + c$ (c) $x (\log x) + c$ (d) None

68. The value of $\int_0^{\pi} \frac{x \, dx}{1 + \sin x}$ is
(a) $-\pi$ (b) 0 (c) π (d) 2π

69. If $0 < a < b$, then $\int_a^{b} \frac{|x|}{x} \, dx$ is equal to
(a) $|b| - |a|$ (b) $|a| = |b|$ (c) 0 (d) None

70. What is the area of region bounded by parabola as $y^2 = 6(x - 1)$ and $y^2 = \frac{3x^2}{(a) \frac{\sqrt{6}}{3}}$ (b) $\frac{2\sqrt{6}}{3}$ (c) $\frac{4\sqrt{6}}{3}$ (d) $\frac{5\sqrt{6}}{3}$

71. The value of $\int_0^{\sqrt{2}} [x^2] \, dx$ is equal to
(a) $\sqrt{2} - 1$ (b) $1 - \sqrt{2}$ (c) $2(\sqrt{2} - 1)$ (d) $\sqrt{3} - 1$

72. What are the order and degree of differential equation $\left(\frac{d^3y}{dx^3}\right)^2 = y^4 + \left(\frac{dy}{dx}\right)^5$?

(a) $4,5$ (b) $2,3$ (c) $3,2$ (d) $5,4$

VAJOR HS KALSI'S BAALNOI ACADEMY (Delhi /Jaipur)

Page | 9

- 73. The general solution of differential equation $\frac{dy}{dx} = \frac{ax+b}{by+k}$ represents a circle only when (a) a = b = 0 (b) $a = -b \neq 0$ (c) $a = b \neq 0, h = k$ (d) $a = b \neq 0$
- 74. If x dy = y (dx + dy, y); y (1) = 1 y(x) > 0 then what is value of y(-3)? (a) 3 (b) 2 (c) 1 (d) 0
- 75. What is solution of differential equation $\frac{dx}{dy} + \frac{x}{y} = y^2$? (a) $xy = x^4 + C$ (b) $xy = y^4 + C$ (c) $4xy = y^4 + C$ (d) $3xy = y^3 + C$

76. What is the ratio in which the point $C\left(\frac{-2}{7}, \frac{-20}{7}\right)$ divides the line joining the points A(-2, -2) and B(2, -4)? (a) 1:3 (b) 3:4 (c) 1:2 (d) 2:3

77. What is equation of straight line passing through point (2,3) and making an intercept on the positive y – axis equal to twice its intercept on the positive x – axis?
(a) 2x + y = 5
(b) 2x + y = 7
(c) x + 2y = 7
(d) 2x - y = 1

- 78. What is the equation of straight line passes through intersection of line $\frac{x}{2} + \frac{y}{3} = 1$ and $\frac{x}{3} + \frac{y}{2} = 1$ and parallel to line 4x + 5y 6 = 0? (a) 20x + 25y - 54 = 0 (b) 25x + 20y - 54 = 0(c) 4x + 5y - 54 = 0 (d) 4x + 5y - 45 = 0
- 79. What is equation of line perpendicular to y = x and passes through pt(3,2)!(a) x - y = 5(b) x + y = 5(c) x + y = 1(d) x - y = 1

80. The distance of pt (1,3) from the line 2x + 3y = 6 measured parallel to line 4x + y = 4 is

(a) $\frac{5}{\sqrt{13}}$ (b) $\frac{3}{\sqrt{17}}$ (c) $\sqrt{17}$ (d) $\frac{\sqrt{17}}{2}$

IAJOR HS KALSI'S BAALNOI ACADEMY (Delhi /Jaipur)

Page | 10

81. If a circle of radius *b* units with centre at (0, b) touches line $y = x - \sqrt{2}$, then what is value of *b*?

(a) $2 + \sqrt{2}$ (b) $2 - \sqrt{2}$ (c) $2\sqrt{2}$ (d) $\sqrt{2}$

- 82. What is the radius of circle passes through point (2,4) and having centre at intersection of lines x y = 4 and 2x + 3y + 7 = 0? (a) 3 (b) 5 (c) $3\sqrt{3}$ (d) $5\sqrt{2}$
- 83. What is equation of hyperbola having latus rectum and eccentricity 8 and $3/\sqrt{5}$ respectively?

(a)
$$\frac{x^2}{25} - \frac{y^2}{20} = 1$$
 (b) $\frac{x^2}{40} - \frac{y^2}{20} = 1$ (c) $\frac{x^2}{40} - \frac{y^2}{30} = 1$ (d) $\frac{x^2}{30} - \frac{y^2}{25} = 1$

- 84. If the ellipse $9x^2 + 16y^2 = 144$ intercept line 3x + 4y = 12 then what is length of chord so formed? (a) 5 (b) 6 (c) 8 (d) 10
- 85. The axis of parabola $y^2 = -2x$ is (a) x = 0 (b) y = 0 (c) x = 2 (d) y = 2

86. What is distance of point (2,3,4) from the plane 3x - 6y + 2z + 11 = 0? (a) 1 (b) 2 (c) 3 (d) 4

87. Under which conditions following lines x = ay + b, z = cy + d and x = ey + f and z = gy + h are perpendicular? (a) ae + cg - 1 = 0 (b) ae + bf - 1 = 0(c) ae + cg + 1 = 0 (d) ag + ce + 1 = 0

88. The equation of plane passing through the intersection of planes 2x + y + 2z = 9 and 4x - 5y - 4z = 1 and point (3,2,1) is (a) 10x - 2y + 2z = 28 (b) 10x + 2y + 2z = 28(c) 10x + 2y - 2z = 28 (d) None

89. What is equation of sphere with unit radius having centre at origin? (a) $x^2 + y^2 + z^2 = 0$ (b) $x^2 + y^2 + z^2 = 1$

MAJOR HS KALSI'S BAALNOI ACADEMY (Delhi /Jaipur)								
				Page 11				
	(c) $x^2 + y^2 + z^2$	= 2	(d) $x^2 + y^2 + z^2$	= 3				
90.	What is the angl	e between the line	$es \frac{x-2}{x} = \frac{y+1}{x} = \frac{z+2}{x}$	and $\frac{x-1}{1} = \frac{2y+3}{2} = \frac{z+5}{2}$?				
	(a) π/2	(b) π/3	(c) $\pi/3$	(d) None				
91.	If \vec{a} and \vec{b} are vec what is the acute	ctors such that $ \vec{a} $ e angle between \vec{a}	$= 2, \vec{b} = 7 \text{ and } \vec{c}$ and \vec{b} ?	$\vec{i} \times \vec{b} = 3\hat{i} + 2\hat{j} + 6\hat{k}$ then				
	(a) 50	(0) +3	(c) 00	(u) 90				
92.	If $ \vec{a} = 3$, $ \vec{b} = 4$ (a) 8	and $\left \vec{a} - \vec{b} \right = 5$ (b) 6	then $ \vec{a} + \vec{b} $ is (c) $5\sqrt{2}$	(d) 5 ST'S				
93.	A spacecraft at ά space craft is sul (a) λ	$(k^2 + 2\hat{j} + 3\hat{k} \text{ is subj})$ bjected to a mome (b) $\sqrt{3}\lambda$	ected to a force λ ent of magnitude (c) $\sqrt{5}\lambda$	\hat{k} by firing a rocket. The (d) None				
94.	If the vectors $\alpha \hat{i}$ (a) $A.M.$ of α and (c) $H.M.$ of α and	+ α ĵ + γ k̂, î + k̂ a d β d β	nd $\gamma \hat{\imath} + \gamma \hat{\jmath} + \beta \hat{k}$ li (b) <i>G</i> . <i>M</i> . of α and (d) None	es on a plane, then γ is d eta				
95.	If $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z$ (a) x	$z\hat{k}$, then what is $\vec{r} \cdot$ (b) $x + y$	$(\hat{i} + \hat{j} + \hat{k})?$ (c) $-(x + y + z)$	(d) $(x + y + z)$				
96.	If <i>A</i> is a square n (a) 1/10	natrix of order 3 a (b) 2/5	nd A = 5, then v (c) 8/5	vhat is (2 <i>A</i>) ⁻¹ ? (d) 1/40				
97.	What is the value (a) $1 + x + y + z$	e of determinant (b) 2 <i>xyz</i>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(d) $2x^2y^2z^2$				
98.	If $A = \begin{bmatrix} \cos \theta \\ -\sin \theta \end{bmatrix}$ (a) $\begin{bmatrix} \cos 3\theta & \sin \theta \\ -\sin 3\theta & \cos \theta \end{bmatrix}$	$\begin{bmatrix} \sin \theta \\ \cos \theta \end{bmatrix}$ then A^3 is $\begin{bmatrix} 1 & 3\theta \\ 1 & 3\theta \end{bmatrix}$ $\begin{bmatrix} 3 & 3\theta \end{bmatrix}$	(b) $\begin{bmatrix} \cos^3 \theta & \sin^2 \theta \\ -\sin^2 \theta & \cos^2 \theta \end{bmatrix}$	$\begin{bmatrix}n^3 \\ 0\end{bmatrix}$ s 3 θ]				

MAJOR HS KALSI'S BAALNOI ACADEMY (Delhi /Jaipur)

Page | 12

(c)
$$\begin{bmatrix} \cos 3\theta & -\sin 3\theta \\ \sin 3\theta & \cos 3\theta \end{bmatrix}$$
 (d) None
99. If $A = \begin{bmatrix} 3 & 2 & 0 \\ 2 & 4 & 0 \\ 1 & 1 & 0 \end{bmatrix}$, then adjoint of A is
(a) $\begin{bmatrix} 0 & 0 & 0 \\ -2 & -1 & 8 \end{bmatrix}$ (b) $\begin{bmatrix} 0 & 0 & -2 \\ 0 & 0 & -1 \\ 0 & 0 & 8 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ (d) None
100. If A and B are two matrices of same order then which is correct?
(i) $A^2 - B^2 = (A + B)(A - B)$ (ii) $(A - I)(I + A) = 0 \Leftrightarrow A^2 = I$
(a) Only (i) (b) Only (ii) (c) both (d) None
101. A square matrix A is called Orthogonal if
(a) $A^2 = A$ (b) $A' = A^{-1}$ (c) $A = A^{-1}$ (d) $A = A'$
102. If $a \neq b \neq c$ then value of x satisfy the equation $\begin{vmatrix} 0 & x - a & x - b \\ x + a & 0 & x - c \\ x + b & x + c & 0 \end{vmatrix} = 0$ is
(a) a (b) b (c) c (d) 0
103. For two mutually exclusive events A and B , $P(A) = 0.2 P(A \cap B) = 0.3$. What
is $P\left(\frac{A}{A \cup B}\right)$?
(a) $1/2$ (b) $2/5$ (c) $2/7$ (d) $2/3$
104. A fair coin is tossed 100 times. What is the probability of getting tails an odd
number of times?
(a) $1/2$ (b) $3/8$ (c) $1/4$ (d) $1/8$
105. The mean and standard deviation of a binomial distribution are 12 and 2
respectively. What is number of trials?
(a) 2 (b) 12 (c) 18 (d) 24

106. If *A* and *B* are two events with P(A) = 1/3, P(B) = 1/6 and $P(A \cap B) = \frac{1}{12}$. What is $P(B/\overline{A})$? (a) 1/5 (b) 1/7 (c) 1/8 (d) 1/10

Page | **13**

- 107.8 coins are tosses simultaneously. Probability of getting at least 6 heads is(a) 7/64(b) 57/64(c) 37/256(d) 229/256
- 108. There are n socks in a drawer of which 3 socks are red. If 2 of the socks are
chosen then probability that both selected sock are red is 1/2, then n is
(a) 3 (b) 4 (c) 5 (d) 6
- 109. *A* and *B* are two events such that \overline{A} and \overline{B} are exclusive if P(A) = 0.5, p(B) = 0.6 then $P\left(\frac{A}{B}\right)$ is (a) 1/5 (b) 1/6 (c) 2/5 (d) 1/3
- 110. Three dice are thrown simultaneously. What is probability that sum of numbers on three faces is atleast 5? (a) $\frac{17}{18}$ (b) 53/54 (c) 103/108 (d) 215/216
- 111. What is A. M. of $n_{c_1}, n_{c_2}, n_{c_3} \dots n_{c_n}$? (a) $\frac{2^{n-1}}{n}$ (b) $\frac{2^n}{n+1}$ (c) $\frac{2^n}{n}$ (d) $\frac{2^{n+1}}{n+1}$

112. If covariance between x and y is 30, varience x is 25 and varience of y is 144. Then correlation coefficient r is (a) 0.4 (b) 0.5 (c) 0.6 (d) 0.7

- 113. What is Median of 4.6, , 0, 9.3, -4.8, 7.6, 2.3, 12.7, 3.5, 8.2, 6.1, 3.9, 5.2?(a) 3.8(b) 4.9(c) 5.7(d) 6.0
- 114. The variance of 25 observations is 4. If 2 is added to each observations then new variance will be
 (a) 2
 (b) 4
 (c) 6
 (d) 8
- 115. The average age of combined group of Men and Women is 25 years. If average age of Men is 26 years and the average age of Women is 21 years. Then the percentage of Men and Women in group is respectively.
 (a) 20, 80
 (b) 40, 60
 (c) 60, 40
 (d) 80, 20

Page | 14

- 116. Geometric Mean of 1, 2, $2^2 \dots 2^n$ is (a) $2^{n/2}$ (b) $2^{\frac{n+1}{2}}$ (c) 2^n (d) $2^{1/n}$
- 117. In an examination 40% of candidates got second class. When data are represented by a pie chart, what is angle corresponding to second class?
 (a) 40°
 (b) 90°
 (c) 144°
 (d) 320°

AJOR HS KALSI'S BAALNOI ACADEMY (Delhi /Jaipur)

- 118. The algebraic sum of deviations of 20 observations measured from 30 is 2. What is Mean?
 (a) 30
 (b) 32
 (c) 30.2
 (d) 30.1
- 119. Mode of data 2, 3, 4, 2, 5, 4, 3, 2, 1 is (a) 2 (b) 3 (c) 4 (d) 5
- 120. If $\sum_{i=1}^{n} (x_i 2) = 110$ and $\sum_{i=1}^{n} (x_i 50) = 20$, what is Mean? (a) 11/2 (b) 2/11 (c) 17/3 (d) 17/9