

SAINIK SCHOOL IMPHAL NDA MOCK TEST MATHEMATICS(SET-23)

Date :

TIME : 2 ¹/₂hrs(1030 - 1300hrs)

MAX MARK: 300

General Instruction :

(i)All 120 questions carry 2.5 mark each.

- (ii)There will be penalty of 1/3 of mark assigned to that question (i.e. 0.83) for each wrong answer marked by the candidates.
- (iii)You have to mark your response by completely blackening with black ball pen to indicate your response.

1.	If p and q are the roots of the equation $x^2 - 30x + 221 = 0$,											
١	vhat is t	he valu	e of	$p^3 + q^3?$		(2019-II)						
(a)	7010		(b)	7110		(c)	7210		(d)	7240		
2.	The mean of 5 observations is 4.4 and variance is 8.24. If three of the five observations are 1, 2 & 6 then what are the other two observations ? (2019-II) (a) 9,16 (b) 9,4 (c) 81,16 (d) 81,4											
3.	If the range of a set of observations on a variable 'x' is known to be 25 and if $Y = 40 + 3x$, then what is the range of the set of corresponding observations on 'Y'? (a) 25 (b) 40 (c) 75 (d) 115 (2019-II)											
4.	If the are in (a)	angles the rati 1:2:3	of a tr o (b)	iangle 3: 2: 1	<i>ABC</i> a (c)	re in th 1:√3:	ne ratio 2	0 1: 2 : 3	3, then (d)	the co $1:\sqrt{3}:$	orrespoi √2	nding sides (2019-II)
For th	For the next two questions that follow : The equation formed by multiplying each root of $ax^2 + bx + c = 0$ by 2 is $x^2 + 36x + 24 = 0$.											
5.	What (a)	is b : c 3 : 1	equal (b)	to ? 1: 2	(c)	1:3	(d)	3:2				
6.	Whicł (a)	n one o $bc = a$	f the fo	ollowing (b)	bc = 3	rect ? 36a ²	(C)	bc = 7	72a ²	(d)	bc = 1	108 <i>a</i> ²
7.	The d (a)	omain o (0,∞)	of the f	unctior (b)	$f(x) = [0,\infty)$	= $\sqrt{(2 - 1)^2}$	(x) = -x(x)(x)	— 3) is [2,3]		(d)	(2,3)	(2019-I)

If $\theta = \frac{\pi}{8}$, then what is the value of 8. $(2\cos\theta + 1)^{10} (2\cos2\theta - 1)^{10} (2\cos\theta - 1)^{10} (2\cos4\theta - 1)^{10}$? (2018-II) (a) 0 (b) 1 (c) 2 (d) 4 9. If 4x - 5y + 33 = 0 and 20x - 9y = 107 are two lines of regression, then what are the values of $\overline{x} \& \overline{y}$ respectively? (2018-I) 13 & 17 17 & 13 (a) 12 & 18 (b) 18 & 12 (c) (d) The points (a, b), (0,0), (-a, -b) and (ab, b^2) are 10. (2017-II) The vertices of a parallelogram (b) The vertices of a rectangle (a) (c) The vertices of a square (d) Collinear If $1.3 + 2.3^2 + 3.3^3 + - - - + n.3^n = \frac{(2n-1)3^a + b}{4}$, then *a* and *b* are respectively (a) n, 2 (b) n, 3 (c) n + 1, 2 (d) n + 1, 3 (2017) 11. (2017-II) It is given that the roots of the equation $x^2 - 4x - \log_3 p = 0$ are real. 12. For this, the minimum value of p' is 1 81 (a) $\frac{1}{27}$ (b) $\frac{1}{64}$ (c) (2017-II) (d) 1 The area bounded by the curve |x| + |y| = 1 is 13. (2017-II)(b) $2\sqrt{2}$ square unit 1 square unit (a) $2\sqrt{3}$ square unit (c) 2 square unit (d) 14. Which one of the following is correct in respect of the function f(x) = x(x-1)(x+1)? The local maximum value is larger than local minimum value (a) (b) The local maximum value is smaller than local minimum value The function has no local maximum (2017-II) (c) (d) The function has no local minimum The sum of the first 'n' term of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + --$ is equal to (2017-I) (a) $2^n - n - 1$ (b) $1 - 2^{-n}$ (c) $2^{-n} + n - 1$ (d) $2^n - 1$ 15. The two circles $x^2 + y^2 = r^2$ and $x^2 + y^2 - 10x + 16 = 0$ intersect at two distinct points. 16. Then which one of the following is correct? (2017-I) (b) r = 2 or r = 8(c) r < 2(d) r > 2(a) 2 < r < 817. (0,0,0), (a,0,0), (0,b,0) and (0,0,c) are four distinct points. What are the co-ordinates

of the point which is equidistant from the four points? (2017-I)

(a)
$$\left(\frac{a+b+c}{b}, \frac{a+b+c}{5}, \frac{a+b+c}{5}\right)$$
 (b) (a, b, c) (c) $\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$ (d) $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$

18. The function $f : X \to Y$ defined by f(x) = cosx where $x \in X$, is one-one and onto, if X & Y are respectively equal to (2017-I) $\left[-\frac{\pi}{2},\frac{\pi}{2}\right] \& \left[-1,1\right]$ (a) $[0, \pi] \& [-1, 1]$ (b) (c) $[0,\pi]$ & (-1,1)(d) $[o, \pi] \& [o, 1)$ 19.What is the maximum area of a triangle that can be inscribed in a circle of radius 'a'? (b) $\frac{1}{2}a^2$ (c) $\frac{3\sqrt{3}}{4}a^2$ (d) $\frac{\sqrt{3}}{4}a^2$ (2017-I) $\frac{3}{2}a^{2}$ (a) 20. If (a, b) is at unit distance from the line 8x + 6y + 1 = 0, then which of the following conditions are correct? 3a - 4b - 4 = 02) 8a + 6b + 11 = 03) 8a + 6b - 9 = 0.1) Select the correct answer using the code given below : (2016-II) 1 and 2 only (b) 2 and 3 only (a) 1,2&3 1 and 3 only (d) (c) If $sin\theta = 3sin(\theta + 2\alpha)$, then the value of $tan(\theta + \alpha) + 2tan\alpha$ is equal to 21. (a) -1 (b) 0 (c) (d) 2 (2017-I) 1 For the next 3 items that follow : Consider the expansion of $(1 + x)^{2n+1}$ (2015-II) 22. If the coefficients of x^r and x^{r+1} are equal in the expansion, then r is equal to 2n+12n - 1(b) (c) (a) n (d) n+123. The average of the coefficients of the two middle terms in the expansion is ²ⁿ⁺¹Cn+2 ²ⁿ⁺¹Cn (a) ²ⁿ⁺¹Cn-1 ${}^{2n}C_{n+1}$ (b) (C) (d) The sum of the coefficients of all the terms in the expansion is 24. (a) 2²ⁿ⁻¹ (b) 4ⁿ⁻¹ (c) 2×4^n (d) none 25. An unbiased coin is tossed until the first head appears or until four tosses

	are completed, whichever happens earlier. Which of the following statements is/are correct ?											
1.	The probabil	ity that r	no hea	d is ob	served	is $\frac{1}{16}$						
2.	The probability that the experiment ends with three tosses is $\frac{1}{8}$											
Select	the correct a	inswer u	ising th	ne code	e given	below	· :					
(a)	1 <i>only</i> (b)	2 only	(c)	both 1	& 2	(d) <i>1</i>	neither 1	1 nor	2			
For the	e next two ite Let Sn denote	ms that e the su	follow m of fi	: rst ' <i>n</i> ' te	erms o	f an A.	P. and 3	3Sn=S	52n		(2014-II)	
26.	What is S _{3n} :	Sn equa	al to ?									
(a)	4:1 (b)	6:1	(c)	8:1	(d)	10:1						
27.	What is S _{3n} : (a) 2 : 1	S _{2n} equ (b)	ıal to ? 3 ∺ 1	(c)	4:1	(d)	5:1					
28.	Consider the	e followir	ng stat	ements	s :						(2014-I)	
(i)	The function	f(x) =	$\sqrt[3]{x}$ is	continu	uous at	: all ' <i>x</i> '	except a	at $x =$: 0.			
(ii)	The function which of the	f(x) = above	[x] is statem	contin nents is	uous a s / are o	t x = correct	2.99 ?					
(a)	1only	(b)	2only		(c)	both1	&2	(d) 1	neither1n	ıor2		
For the	e next two ite	ms that	follow	:							(2014-I)	
	Consider the	e integra	ls, I ₁ =	$= \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1+\sqrt{2\pi}}$	$\frac{dx}{\sqrt{tanx}}$ ar	nd $I_2 =$	$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{s}}{\sqrt{\sin x}}$	$\frac{\sin x}{+\sqrt{\cos x}}$	dx			
29.	What is $I_1 - I_2$ (a) 0	equal to (b)	o ? 2I ₁	(c)	π	(d)	none					
30.	What is I_1 eq (a) $\frac{\pi}{24}$	ual to ? (b)	$\frac{\pi}{18}$	(c)	$\frac{\pi}{12}$	(d)	$\frac{\pi}{6}$					
31.	If the straigh	t line $\frac{x-x}{l}$	$\frac{xo}{y} = \frac{y}{y}$	$\frac{-yo}{n} = \frac{z}{n}$	$\frac{-zo}{n}$ is p	arallel	to the pl	lane d	ax + by +	cz +	d = 0	

	then	which	one of	the fol		(2013-I)						
	(a)	l+m	+ n = ()	(b)	a + b	+ c = 0					
	(C)	$\frac{-+}{b}m$ +	$\frac{1}{n} = 0$		(d)	al + b	m + cr	a = 0				
32.	A fair	coin is	tossed	repeat	edly. T	he pro	bability	of get	ting a r	esult in t	the fifth tos	3
diffe	rent fro	om thos	e obta	ined in	the firs	st four t	osses	is			(2013-I)	
(a)	¹ / ₂	(b)	¹ / ₃₂		(c)	³¹ / ₃₂		(d)	¹ / ₁₆			
33.	lf $f(x)$ f'(c) = (a)	= x ² – = 0, the 2.5	- 6 <i>x</i> + 8 en what (b)	8 and tl t is the 2.8	nere ex value ((c)	kists a p of ' <i>c</i> ' ? 3	ooint <i>c</i> (d)	in the i 3.5	nterval	[2,4] su	uch that (2012	2-I)
34.	What (a)	is the n <i>abc</i>	ninimur (b)	m value 2 <i>abc</i>	e of a^2x (c)	$x + b^2 y$ 3abc	when (d)	$\begin{array}{l} xy = 0\\ 4abc \end{array}$	c ² ?		(201	9-I)
35.	If	= î — 2j	$\hat{k} + 5\hat{k}$	and \vec{b} =	2î + ĵ	— 3 <i>ƙ</i>	then	what i	s (\vec{b} –	<i>ā</i>) · (3 <i>ā</i>	$+\vec{b})$ equal	to ?
(a)	106		(b)	-106		(c)	53		(d)	-53	(2019-I)	
36.	What	is the v	alue of	log ₇	log7	$\sqrt{7\sqrt{7}}$	$\sqrt{7}$ eq	ual to?			(2018-II)	
(a)	3log ₂	7	(b)	1 – 3 l	og ₂ 7	(c)	1-3	log ₇ 2	(d)	⁷ /8		
37.	Let A	= { <i>x</i> ∈	R/−1 <u></u>	$\leq x \leq 1$.}, <i>B</i> =	$\{y \in R$	/−1 ≤	$y \le 1$				
and 'S	' be the	e subse	et of A >	× B def	ined by	$\gamma S = \{($	(<i>x</i> , <i>y</i>) ∈	$A \times B$	$x^{2} + y$	$^{2} = 1$		
which	one of	the foll	lowing	is corre	ect?							
(a)	<i>S</i> is or	ne-one	functio	n from	A to B	(b)) <i>S</i> is a	bijectiv	e map	ping fror	m A to B	
(c)	S is m	any on	e funct	ion fror	n A to .	<i>B</i> (d)) <i>S</i> is n	ot a fun	ction		(2018-II)	
38.	The se	econd o	degree	equati	on x² +	$-4y^{2}-$	2x - 4	+y + 2 =	= 0 rep	resents	(2018-II)	
(a	ı)	a poin	t		(b)	an elli	pse of	semi-m	najor ax	kis 1		
(c)	an ellip	ose with	n eccer	ntricity	$\frac{\sqrt{3}}{2}$ ((d)	none	of the a	above			
39.	Conside	er the fu	nction <i>f</i>	$f(x) = \begin{cases} \\ \\ \end{cases}$	$\frac{\frac{\sin 2x}{5x}}{\frac{2}{15}}, x$	$\begin{array}{l} c \neq 0 \\ c = 0 \end{array}$						

Which one of the following is correct in respect of the function ? (2018-II) (a) it is not continuous at x = 0(b) it is continuous at every x (d) it is continuous at x = 0(c) it is not continuous at $x = \pi$ 40. 8 Coins are tossed simultaneously. The probability of getting at least 6 heads is $\frac{57}{64}$ 37 $\frac{7}{64}$ (c) (d) (a) (b) (2018-II) For the next two items that follow: Consider the integrals: (2015-II) $A = \int_0^{\pi} \frac{\sin x}{\sin x + \cos x} dx$ and $B = \int_0^{\pi} \frac{\sin x}{\sin x - \cos x} dx$ 41. Which one of the following is correct? (2015-II)(a) A = 2B(b) B = 2A(C) A = B(d) A = 3B42. What is the value of B? $\frac{\pi}{4}$ 3π (c) (d) (a) (b) π The value of $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y \end{vmatrix}$ 43. (2015-I) is (b) (a) x - y (c) (d) x + y1 + x + yxyFor the next two items that follow: Given a function $f(x) = \begin{cases} -1 & x \le 0 \\ ax + b & 0 < x < 1 \\ 1 & x \ge 1 \end{cases}$ (2015-I) Where *a*, *b* are constants. The function is continuous everywhere. What is the value of 'a'? 44. (a) -1 (b) 0 (C) 1 (d) 2 45. What is the value of 'b'? -1 (c) 0 2 (a) (b) 1 (d) 46. The correlation coefficient between two variables X and Y is found to be0.6. All the observations on X and Y are transformed using the transformation U = 2 - 3xand V = 4y + 1. The correlation coefficient between the transformed variables (2015-I) U and V will be (b) +0.5 (a) -0.5 (C) -0.6(d) +0.6

47.	The relation S is defined on the set of integers Z as xSy if integer x divides integer y. then (2014-II)										
(a)	S is an equiv	alence	relation	on	(b)	S is only reflexive and symmetric					
(c)	S is only refle	exive a	nd tra	nsitive	(d)	S is o	nly sym	metric	and tra	ansitive	
48.	What is $\left(\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt$	$\left(\frac{\overline{3}+i}{\overline{3}-i}\right)^6$ eo	qual to	where	$i = \sqrt{-}$	<u>–1</u> (2014-II)					
	(a) 1		(b)	¹ / ₆		(c)	6		(d)	2	
49.	If α , β are the then what is	roots of s ' <i>h</i> ' equ	$f ax^2 + ual to ?$	bx + c =	= 0 and	$\alpha + h, \mu$	3 + h are (2	e the ro 014-II)	ots of	$px^2 + qx + r = 0,$	
(a)	$\frac{1}{2}\left(\frac{b}{a} - \frac{q}{p}\right)$		(b)	$\frac{1}{2}\left(-\frac{b}{a}\right)$	$+\frac{q}{p}$)						
(C)	$\frac{1}{2}\left(\frac{b}{p} + \frac{q}{a}\right)$		(d)	$\frac{1}{2}\left(-\frac{b}{p}\right)$	$+\frac{q}{a}$)						
50.	If the matrix	A is su	ch tha	$t \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$	A = ($\begin{array}{ccc} 1 & 1 \\ 0 & -1 \end{array}$) then v	what is	A equ	al to ?(2014-II)	
(a)	$\begin{pmatrix} 1 & 4 \\ 0 & -1 \end{pmatrix}$	(b)	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\binom{4}{1}$	(c)	$\begin{pmatrix} -1\\ 0 \end{pmatrix}$	$\binom{4}{-1}$	(d)	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	-4 -1)	
51.	The equation	n of the	plane	e passin	g throu	gh the	line of	interse	ction o	f the planes	
x + y -	+ z = 1, 2x +	3y + 4	z = 7	and per	pendic	ular to	the plar	ne <i>x</i> –	5 <i>y</i> + 3	z = 5 is given by (2017-II)	
(a)	x + 2y + 3z -	- 6 = 0)	(b)	x +2 <i>y</i> ·	+ 3 <i>z</i> +	6 = 0				
(c)	3x + 4y + 5z	- 8 =	0	(d)	3x + 4	4y + 5z	z + 8 =	0			
52.	The number	of term	ns in th	ne expa	nsion c	of (<i>x</i> +	a) ¹⁰⁰ + (2017-	(x — a -II)) ¹⁰⁰ af	ter simplification is	;
(a)	202	(b)	101		(c)	51		(d)	50		
53.	The value of	is $\frac{1}{\log_3}$	$\frac{1}{e} + \frac{1}{\log e}$	$\frac{1}{g_3 e^2} + \frac{1}{\log 2}$	$\frac{1}{g_3e^4}+\cdot$	·· ∝	is			(2017-II)	
(a)	log _e 9	(b)	0		(c)	1		(d)	log _e 3		
54.	If 'E' is the u	niversa	l set a	and $A =$	$B \cup C$,	then th	ne set E	— (E -	- (<i>E</i> –	(E-(E-A))))	
	is same	as the	set							(2017-II)	
(a)	$B' \cup C'$	(b)	$B \cup C$		(c)	$B' \cap C$	1	(d)	$B \cap C$		
55.	What is the a	area bo	ounded	d by the	lines x	= 0, y	= 0 an	d x + y	v + 2 =	= 0 ?(2013-II)	
(a)	$^{1}\!/_{2}$ square u	(b)1 square unit			(c)2 square units			(d)4 square units			

56.	Which one of the following may be the parameter of a binomial distribution ?											
	(a)	np = 2	2, <i>npq</i> =	= 4	(b)	(b) $n = 4, p = \frac{3}{2}$						
	(c) $n = 8$, $p = 1$		(d)	np = 1	np = 10, npq = 8			(2013-II)		
57.	The sum of the focal distances of a point on the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ is (2012-II)											
(a)	4 unit	S	(b)	6 units	(c)	8 unit	S	(d)	10 uni	its		
58. What is the angle between the lines $\frac{x-2}{1} = \frac{y+1}{-2} = \frac{z+2}{1}$ and $\frac{x-1}{1} = \frac{2y+3}{3} = \frac{z+5}{2}$? (2012-II)												
(a)	$\frac{\pi}{2}$		(b)	$\frac{\pi}{3}$	(c)	$\frac{\pi}{6}$		(d)	none			
59.	Consider the following statements. (2012-II)											
1.	The value of $\cos 46^\circ - \sin 46^\circ$ is positive.											
2.	The value of $\cos 44^\circ - \sin 44^\circ$ is negative.											
Which of the above statements is/are correct ?												
(a)	1 only		(b)	2 only	(c)	both 1	& 2	(d) ne	either 1	nor 2		
60.	60. The algebraic sum of the deviations of 20 observations measured from 30 is 2.											
What	would	be the	mean	of the obser	rvations				(2012	2-11)		
(a)	30		(b)	32	(c)	30.2		(d)	30.1			
61.	The d	ifferent	ial equ	ation $y \frac{dy}{dx} +$	x = a w	here 'a'	is any	consta	ant, rep	resents :		
	(a) (c)	a set o a set o	of straig of circle	ght lines es	(b) (d)	a set o none	of ellips	ses		(2012-II)		
62.	Let A	$= \{x \in$	$R/x \ge$	0}, A functio	pn f : A	$\rightarrow A$ is	define	d by f	$(x) = x^2$	2		
Whi	ich one	e of the	follow	ing is correc	rt ?		<i>(</i> 1.)			(2012-II)		
	(a) (c)	the fui the fui	nction (nction l	does not hav nas an inver	ve invers se but 'j	se f' is not	(b) its owr	' <i>f'</i> is i n inver	ts own se	inverse (d) none		
63.	Let α,	β be th	e roots	s of the equa	ation (x	(x - a)(x - a)	– b) +	<i>c</i> = 0, <i>c</i>	$c \neq 0.$			
TI	hen the	e roots (a)	of the a,c	equation (x (b)	$(\alpha - \alpha)(x)$ b, c	-β)+	c = 0 a (c)	are a, b	(d)	a + b, a + c		
64.	If $ \overrightarrow{a} $ = (a)	= 4 and [0,12]	−3 ≤	$\lambda \le 2$, then (b) [2,3]	λā lies 	s in (c)	[8,12]		(d)	(CBSE-2020) [-12,8]		
65.	lf 'A' is	s a non	-singul	ar square m	atrix of o	order 3	such th	nat A ²	= 3 <i>A</i> ,			

i	then val	ue of A is	(CBSE-2020)								
(a)	-3	(b)	3		(c)	9	(d)	27		
66.	The co	-ordinates	of the fo	ot of the	e perpe	endicula	ar drawn f	from	the po	int (2, -3,4)	
	on	the $y - ax$	is is						(CBSE	BSE-2020)	
(a)	(2,3,4)	(b)	(-2,-	-3, -4)		(c)	(0, -3,0)		(d)	(2,0,4)	
67.	The interval in which the function 'f' given by $f(x) = x^2 e^{-x}$ is strictly increasing is										
	(a)	(−∝,∝)	(b)	(−∝,0))	(c)	(2,∝)		(d)	(CBSE-2020) (0,2)	
68.	The fur	nction $f(x)$	$=\frac{x-1}{x(x^2-1)}$	$\frac{1}{1}$ is disc	continu	ous at					
	(a) (c)	exactly one exactly thre	e point ee points	5	(b) (d)	exactl no poi	y two poir int	nts			
69.	The function $f: R \to [-1,1]$ defined by $f(x) = cosx$ is(CBSE-2020)(a) both one-one and onto(b) not one-one but onto(c) one-one but not onto(d) neither one-one nor onto										
70.	 D. The relation R in the set {1,2,3} given by R = {(1,2), (2,1), (1,1)} is (CBSE-2020) (a) symmetric and transitive but not reflexive (b) reflexive and symmetric but not transitive (c) symmetric but neither reflexive nor transitive (d) an equivalence relation. 										
71.	If $ \vec{a} =$	3 , $ \vec{b} = 4$	and a	$\times \vec{b} = 0$	6, then	the va	lue of \vec{a} ·	$ec{b}$ is	(CBSE	E-2020)	
(a)	12	(b)	6		(C)	3√3	(d)	6√3		
72.	The function $f : R \to R$ given by $f(x) = - x - 1 $ is (CBSE-2020) (a) Continuous as well as differentiable at $x = 1$ (b) not continuous but differentiable at $x = 1$ (c) Continuous but not differentiable $x = 1$ (d) neither continuous nor differentiable at $x = 1$										
73.	The ve (a)	ctors 3î – ĵ −2 (b)	$k^{2} + 2\hat{k}, 2$	î + ĵ + 3 (C)	3 <i>ƙ</i> and 2	$\hat{\iota} + \lambda \hat{j} \cdot \hat{d}$	 k are contract any real 	oplar numl	ner if v ber	alue of ' λ ' is (CBSE-2020)	
74.	If $p = c$	osecθ – co	tθ and d	q = (cos	secθ +	cot $ heta)^{-1}$	¹ then whi	ich o	ne of t	he	
follo	wing is (a)	correct ? pq = 1	(b)	p = q		(c)	p+q=2	1	(d)	(2019-I) p + q = 0	
75.	The ler	ngth of the	perpend	licular fr	om the	e origin	to a line i	s 5 u	nits ar	nd the line	

makes an angle 120° with the positive direction of x-axis. The equation of line is (2015-I)

 $\sqrt{3x} + y = 10$ $x + \sqrt{3}v = 5$ $\sqrt{3x} - y = 10$ (d) (a) (b) (c) none If $A \subseteq B$, then which one of the following is not correct ? 76. (2015-I) (b) $P(A/B) = \frac{P(A)}{P(B)}$ (c) $P(B/A) = \frac{P(B)}{P(A)}$ (d) $P(A/(A \cup B)) = \frac{P(A)}{P(B)}$ $P(A \cap \overline{B}) = 0$ (a) For the next four items that follow : Consider the integral $I_m = \int_0^{\pi} \frac{\sin 2mx}{\sin x} dx$ where 'm' is a positive integer. (2015-I) 77. What is I1 equal to ? $1/_{2}$ (b) (d) (a) (C) 1 2 4 78. What is $I_2 + I_3$ equal to ? 1 (d) 0 (a) 4 (b) 2 (c) 79. What is I_m equal to ? (a) 0 (b) 1 (C) т (d) 2m80. Consider the following :- $I_m - I_{m-1}$ is equal to 0 1) 2) $I_{2m} > I_m$ Which of the above is / correct ? (a) 1onlv (b) 2only *both*1 & 2 (d) neither1 nor 2 (c) If $\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{a} + \frac{1}{c}$ then a, b, c are in 81. (2011-I) (a) A.P (C) H.P(d) none One of the roots of the equation $ax^2 + bx + c = 0, a \neq 0$ is positive and the other 82. root is negative. The condition for this to happen is (2011-I) (a) a > 0, b > 0, c > 0(b) *a* > 0, *b* < 0, *c* > 0 *a* < 0, *b* > 0, *c* < 0 (d) a < 0, c > 0(c) If A and B are events such that $P(A \cup B) = 0.5$, $P(\overline{B}) = 0.8$ and P(A/B) = 0.4, 83. then what is $P(A \cap B)$ equal to ? 0.08 (a) (b) 0.02 (C) 0.8 (d) 0.2 What are the points of intersection of the curve $4x^2 - 9y^2 = 1$ 84.

with the conjugate axis? (2011-I) (1/2, 0) and (-1/2, 0)(b) (0,2) & (0,-2)(a) (c) (0.3) & (0, -3)(d) no such points exist If $z = 1 + \cos \frac{\pi}{5} + i \sin \frac{\pi}{5}$ then what is |z| equal to ? 85. (2011-I) $2\cos\frac{\pi}{5}$ (b) $2\sin\frac{\pi}{5}$ (c) $2\cos\frac{\pi}{10}$ (d) $2\sin\frac{\pi}{10}$ (a) Let'M' be the set of men and R is a relation 'is son of' defined on M. Then R is 86. an equivalence relation a symmetric relation only (a) (b) a transitive relation only (2011-I) (c) (d) none of the above What is the value of $\sqrt{3} \operatorname{cosec} 20^\circ - \sec 20^\circ$? (2010-I) 87. 1/4 (a) (b) 4 (c) 2 (d) 1 Let 'A' be a $n \times n$ matrix. If $det(\lambda A) = \lambda^s det(A)$ What is the value of s? 88. (a) 0 (b) 1 (c) −1 (d) (2010-I) п 89. What is the number of ways of arranging the letters of the word BANANA so that no two Ns appear together ? 60 (a) 40 (b) (C) 80 (d) 100 90. What is the number of three-digit odd numbers formed by using the digits 1,2,3,4,5,6 if repetition of digits is allowed? (2010-I) (a) 60 (b) 108 (c) 120 (d) 216 If $x^2 + y^2 = 1$, then what is $\frac{1+x+iy}{1+x-iy}$ equal to ? 91. (2010-I)(a) x - iy (b) x + iy(c) 2*x* (d) -2iyIf 2x = 3 + 5i, then what is the value of $2x^3 + 2x^2 - 7x + 72$? 92. (2009-I)4 (b) -4 (c) 8 (d) -8 (a) 93. In how many ways can the letters of the word GARDEN be arranged so that in each word the vowels should appear in alphabetical order ? (2009-I)(a) 120 (b) 240 (c) 360 480 (d) 94. Consider the following in respect of a non-singular matrix of order 3 :(2020-I&II) A(adjA) = (adjA)A1) 2) |adiA| = |A|

Whick	Which of the above statements is / are correct ?											
(a)	1only	(b)	2 only		(C)	both 1	1& 2	(d)	neither	1 nor 2		
95. ?	If p^2 , q^2 and r^2 (where $p, q, r > 0$) are in $G.P$, then which of the following is/are correct (2020-I&II)											
	1) p,qa Select the c (a) 1 onl (c) both	nd r are correct a ly 1 and 2	e in <i>G.P</i> answer u 2	using th (b) (d)	 2) <i>lnp, lnq</i> and <i>lnr</i> are in <i>A</i>. <i>P</i> the code given below : 2 only neither 1 nor 2 							
96.	The roots α and β of a quadratic equation, satisfy the relation (2020-I&II) $\alpha + \beta = \alpha^2 + \beta^2$ and $\alpha\beta = \alpha^2\beta^2$. What is the number of such quadratic equations											
(a)	0 (b)	2	(c)	3	(d)	4						
97.	Let <i>p</i> , <i>q</i> and <i>r</i> be three distinct positive real numbers. If $D = \begin{vmatrix} p & q & r \\ q & r & p \\ r & p & q \end{vmatrix}$											
	then which one of the following is correct ? (2020-I&II)											
(a)	<i>D</i> < 0	(b)	$D \leq 0$		(c)	D > 0		(d)	$D \ge 0$)		
	Direction for Read (2020-I&II)	the foll the f Let $\frac{ta}{ta}$	lowing two following $\frac{an3A}{nA} = k$	wo item g inforr z, where	ns : mation e tanA	and $\neq 0$ and	answei d K ≠ 1 / ₃	r the	two ite	ems that	follow :	
98.	What is tan (a) $\frac{K+3}{3K-1}$	² A equa	al to ? (b)	$\frac{K-3}{3K-1}$		(c)	$\frac{3K-3}{K-3}$		(d)	$\frac{K+3}{3K+1}$		
99.	For real val (a) $\frac{1}{3}$ and	ues of <i>t</i> d 3	anA, K (b)	can't lie $\frac{1}{2}$ and 2	e betw 2	een (c)	$\frac{1}{5}$ and	5	(d)	$\frac{1}{7}$ and 7		
100.V	Vhich one of	the follo	owing is	correct	t in res	spect of	f the gr	aph o	$f y = \frac{1}{x-1}$	- 1 ?(2020-18	ЗII)	
(a)	The domair	n is { <i>x∈I</i>	$R/x \neq 1$	and th	ne rang	ge is th	e set of	f reals	6.			
(b)	The domair intersects y	n is { <i>x ∈.</i> -axis at	$R/x \neq 1$ $(0,-1)$	} and th	he ran	ge is {ງ	v∈R/y =	≠ 0} a	and the g	graph		

- (c) The domain is the set of reals and the range is the singleton set {0}
 - (d) The domain is $\{x \in R / x \neq 1\}$ and the range is the set of points on the y-axis

101. If three dice are rolled under the condition that no two dice shown the same face what is the probability that one of the faces is having the number 6? then

> $\frac{5}{6}$ (b) $\frac{5}{9}$ (c) $\frac{1}{2}$ (d) $\frac{5}{12}$ (2020-I & II) (a)

102. A husband and wife appear in an interview for two vacancies for the same post.

The probability of the husband's selection is $\frac{1}{7}$ and that of the wife's selection is $\frac{1}{5}$. If the events are independent, then the probability of which one of the following is $\frac{11}{35}$?

(2020 - |&|)

- At least one of them will be selected (a)
 - Only one of them will be selected (b)
 - None of them will be selected (C)
 - Both of them will be selected. (d)
- The circle $x^2 + y^2 + 4x 7y + 12 = 0$, cuts an intercept on y-axis equal to (2019-I) 103. (b) 3 (c) 4 (d) (a) 1 7
- What is the least value of $25cosec^2x + 36sec^2x$? (2019-I) 104.
- (b) 11 (c) 120 (d) 121 (a) 1
- 105. From a deck of cards, cards are taken out with replacement. What is the probability that the fourteenth card taken out is an ace ? (2019-I)
- $\frac{1}{51}$ (b) $\frac{4}{51}$ (c) $\frac{1}{52}$ (d) $\frac{1}{13}$ (a) What is $\begin{vmatrix} -a^2 & ab & ac \\ ab & -b^2 & bc \\ ac & bc & -c^2 \end{vmatrix}$ equal to ? 106. (2012-I) (d) $-4a^2b^2c^2$ (a) 4abc 107. If $|z + \overline{z}| = |z - \overline{z}|$, then the locus of z is (2014-I)a pair of straight lines (b) a line (a) (c) a set of four straight lines (d) a circle 108. The solution of $\frac{dy}{dx} = |x|$ is (2014-I) $y = \frac{x|x|}{2} + c$ (b) $y = \frac{|x|}{2} + c$ (c) $y = \frac{x^2}{2} + c$ (d) $y = \frac{x^3}{2} + c$ (a) (2016-I)
- 109. Consider the following statements :
- $tan^{-1}x + tan^{-1}\left(\frac{1}{x}\right) = \pi$ 1.
- There exist $x, y \in [-1,1]$ when $x \neq y$ such that $sin^{-1}x + cos^{-1}y = \frac{\pi}{2}$ 2.

Which of the above statements is / are correct ?

(a) 1 only (b) 2 only (c) both 1 and 2 (d) neither 1 nor 2 110. The line passing through the points (1,2,-1) and (3,-1,2) meets the yz-plane at which one of the following points ? (2017-I)(b) $(0, \frac{7}{2}, \frac{1}{2})$ (c) $(0, -\frac{7}{2}, -\frac{5}{2})$ (d) $(0, \frac{7}{2}, -\frac{5}{2})$ $(0, -\frac{7}{2}, \frac{5}{2})$ (a) 111. If the regression coefficient of x on y and y on x are $-\frac{1}{2}$ and $-\frac{1}{8}$ respectively, then what is the correlation coefficient between x and y? (2017-I) (a) $-\frac{1}{4}$ (b) $-\frac{1}{16}$ (c) $\frac{1}{16}$ (d) $\frac{1}{4}$ 112. If the graph of a quadratic polynomial lies entirely above x-axis, then which one of the following is correct? (2017-I)both the roots are real (b) one root is real and the other root is complex (a) both the roots are complex (c) (d) cannot say Let $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, then the number of subsets of A containing 113. two or three elements is (2017-I)165 120 (c) (d) 330 (a) 45 (b) Consider the following statements : 114. (2018-I) 1. Mean is independent of change in scale and change in origin Variance is independent of change in scale but not in origin Which of 2. the above statements is / are correct ? (b) (a) 2 only (C) both 1 and 2 (d) neither 1 nor 2 1only The differential equation of the system of circles touching the y-axis at the origin is 115. (2019-I) $x^{2} + y^{2} - 2xy\frac{dy}{dx} = 0$ (b) $x^{2} + y^{2} + 2xy\frac{dy}{dx} = 0$ (a) (c) $x^2 - y^2 + 2xy \frac{dy}{dx} = 0$ (d) $x^2 - y^2 - 2xy \frac{dy}{dx} = 0$ 116. If $\int_a^b x^3 dx = 0$ and $\int_a^b x^2 dx = \frac{2}{3}$ then what are the values of *a* and *b* respectively ? (a) -1,1 (b) 1,1 (c) 0,0 (d) 2,-2 (2018-I)

117. Consider the following statements :

1. The general solution of $\frac{dy}{dx} = f(x) + x$ is of the form y = g(x) + c, where c is an arbitrary constant.

2. The degree of
$$\left(\frac{dy}{dx}\right)^2 = f(x)$$
 is 2

Which of the above statement is/are correct ?

(a) 1 only (b) 2 only (c) both 1 and 2 (d) neither 1 nor 2

118. What is the differential equation of all parabolas whose axes are parallel to y-axis? (2011-I)

(a)
$$\frac{d^3y}{dx^3} = 0$$
 (b) $\frac{d^2x}{dy^2} = c$ (c) $\frac{d^3x}{dy^3} = 1$ (d) $\frac{d^3y}{dx^3} = c$

119. What is the order of the differential equation $\frac{dx}{dy} + \int y dx = x^3$? (2016-II) (a) 1 (b) 2 (c) 3 (d) can't be determined

120. Equation of the curve passing through (1,1) and satisfying the differential equation

$$\frac{dy}{dx} = \frac{2y}{x}$$
, $(x > 0, y > 0)$ is given by

(a)
$$x^2 = y$$
 (b) $x = y^2$ (c) $x = 2y$ (d) $y = 2x$

(2015-I)